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An alternative viewpoint for the selection problem in propagating front systems is presented. We pro-
pose that the selected solution can be identified through analysis of the structural stability of the solu-
tions in question. A solution to a given equation is considered structurally stable if it suffers only an
infinitesimal change when the equation (not the solution) is perturbed infinitesimally. Applying the
structural stability condition, we identify selected solutions for semilinear parabolic partial differential
equations, single-mode equations of the Fisher type, and multiple-mode equations that assume some-
thing of a generalized Fisher form. The structural stability condition is confirmed for the subclass of
single-mode equations to which the Aronson-Weinberger theorem applies [in Partial Differential Equa-
tions and Related Topics, edited by J. A. Goldstein (Springer, Heidelberg, 1975)]. For other single-mode
equations and multiple-mode equations, the structural stability condition is confirmed numerically.
Equations possessing multiple physically realizable solutions are also studied, and several causes for such
behavior are identified. We describe what we believe to be the fundamental feature distinguishing physi-

cally realizable and physically unrealizable solutions.

PACS number(s): 03.40.Kf, 68.10.Gw, 47.20.Ky

I. INTRODUCTION

Systems exhibiting front propagation phenomena have
been the focus of considerable study in recent years.
From the theoretical point of view, a very interesting as-
pect of this study has been the attempt to identify “‘select-
ed” solutions to the equations modeling this behavior.
Many of these equations possess multiple stable
traveling-wave solutions, while the physical systems they
describe exhibit reproducible behavior corresponding to
only one of these solutions [1-9]. Presently, there exists

no general method by which selected solutions of such
equations can be identified. It is our goal to make pro-
gress toward the construction of such a method. In this
paper, we identify a characterization of the selected solu-
tions to a certain class of equations and isolate what we
believe to be the fundamental feature distinguishing phys-
ically realizable and physically unrealizable solutions.
With the insight afforded by this selection principle, we
hope that further application of the theoretical frame-
work used here will lead to methods by which selected
solutions can be explicitly computed. Some attempts are
already given in [10] along with a partial summary of this
paper.

We address the question of selection by pursuing an
approach which differs from those taken traditionally.
We propose that for any propagating front system, the
selected solution must be characterized by a sort of
structural stability, whose definition will be given in Sec.
III. Roughly speaking, this proposition amounts to the
condition that a physically observable propagat-
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ing front solution to a given equation must suffer only a
small modification when the equation (not the solution) is
altered slightly. This is our structural stability hy-
pothesis.

In this paper, we study front propagation described by
semilinear parabolic partial differential equations. The
single-mode equations considered fall naturally into three
distinct categories. We first consider equations of the
Fisher form (2.1). The present theoretical understanding
of such equations leads us to distinguish between two
types, those to which the max-min principle of Aronson
and Weinberger [12] apply (AW type) and the rest (non-
AW type). In both cases, the structural stability hy-
pothesis implies a characterization of the selected solu-
tions as the slowest stable ones. For those equations of
the AW type, this characterization is confirmed by the
max-min principle. Numerical confirmation for a non-
AW-type equation is given here. As a third type of equa-
tion, we consider a semilinear parabolic partial
differential equation (PDE) which is not of the Fisher
form and, based on numerical results, conclude that here
again the selected solution is the slowest stable one. This
result provides evidence that the arguments applied to
the Fisher equation are valid for an even larger class of
equations.

We next consider a somewhat restricted class of
multiple-mode equations assuming something of a gen-
eralized Fisher form. Again, the structural stability hy-
pothesis allows us to make a characterization of the
selected solutions for such equations (see Sec. VI). In this
case, although the characterization does not identify it as
such, we believe that again the selected solution is the
slowest stable one. A supporting numerical example is
given. For one example of a less restricted class of
multiple-mode equations, we obtain numerical results in
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TABLE I. The equations we study fall naturally into five distinct categories. The critical damping
and minimum speed characterizations are equivalent for both types of Fisher equations as well as for
the single non-Fisher equation studied. We conjecture that for the multiple-mode equations considered,
these characterizations are again equivalent. For those equations possessing multiple physically realiz-
able solutions representing invasion into a given unstable stationary solution, we believe that there ex-
ists a family of stable traveling wave solutions interpolating between this unstable stationary solution
and a set of unique, isolated stable stationary solutions, and that each physically realizable solution

represents the slowest member of such a family.

Equation type Characterization Confirmation
single-mode . AW critical damping rigorous
Fisher R .
non-AW =minimum speed numeric
non-Fisher numeric
multiple-mode single physical critical damping numeric
solution (minimum speed?)
multiple physical critical damping
solutions (locally minimum speed?)

#Conjectured.

agreement with the hypothesis that the selected solution
is structurally stable, and all others are structurally un-
stable. Finally, we study multiple-mode equations for
which no unique selected solution exists. In this case, de-
pending on the initial conditions, any one of multiple
structurally stable solutions can be realized in a given ex-
periment. We believe that each of these physically realiz-
able solutions represents the slowest member of a distinct
continuous family of solutions. Such a family consists of
all stable solutions converging asymptotically behind
their fronts to the same stable fixed point of the PDE. It
is in this sense that the minimum speed hypothesis ap-
plies to such equations. A summary of the above discus-
sion is given in Table 1.

In the next section, we describe the nature of the selec-
tion problem for propagating front systems and briefly re-
view some of the extant work relevant to the problem.
The structural stability philosophy and its application to
the Fisher equation are discussed in Sec. III. In Sec. IV,
the selected solution for this equation is identified. We
discuss the feature which distinguishes this solution from
the other traveling-wave solutions and the relation be-
tween the structural stability and max-min arguments in
Sec. V. The analysis applied to the Fisher equation is
generalized in Sec. VI and applied to the multiple-mode
equation discussed above. In Sec. VII a method to com-
pute selected propagation speeds for certain N-mode sys-
tems is introduced. Numerical confirmation of the pre-
dictions of Secs. IV and VI for several equations is given
in Sec. VIII. Systems which possess multiple physically
realizable solutions are considered in Sec. IX. A short
summary and concluding remarks are given in Sec. X.

II. SELECTION PROBLEM

Model equations describing front propagation are usu-
ally deterministic PDE’s. Therefore, if we can character-
ize the class of initial conditions which are physically ac-
cessible (i.e., realizable under ordinary experimental con-
ditions), solving a model equation as an initial value prob-
lem determines which propagating fronts are realizable.
Thus when we consider the time evolution of the system,

there is no need to consider selection rules for the final
steady states. The selection problem arises when we seek
to make the same determination without solving the ini-
tial value problem. Given the set of all propagating solu-
tions to a model PDE, can we find a principle which al-
lows us to identify the physically realizable solution(s)
without explicitly solving the initial value problem? This
is the selection problem we wish to address. The question
is practically meaningful because it is often easier to ob-
tain propagating front solutions than to solve initial value
problems. In order to find such a principle, we need a
way to characterize those wave fronts which are observ-
able under natural experimental conditions.

The characterization of accessible propagating solu-
tions has been the goal of considerable study for many
years. Kolmogorov, Petrovskii, and Piskunov [11],
Aronson and Weinberger [12], Hadeler and Rothe [13],
and others have made important progress toward this
goal through their study of the following semilinear para-
bolic PDE, often called the Fisher equation,

W _py), 2.1)
ot  ox?

where F is a continuous function with F(0)=F(1)=0. If
F furthermore satisfies the condition F(¢)>0 for all
¥ €(0,1), then there exists a stable traveling-wave solu-
tion interpolating between ¥=1 and ¥=0 with propaga-
tion speed ¢ for each value of c¢ greater than or
equal to some minimum value c*, where ¢* > ¢, =2V/1,,
and [,=F'(0). The positivity condition on F stated
above together with the condition that /, >0 will hence-
forth be called the AW condition.

For (2.1) with the AW condition in 1-space, Aronson
and Weinberger proved that if the initial value
¥(x,0)€[0,1] vanishes beyond some finite x,, then
¥(x,?) converges to the traveling-wave solution of (2.1)
with speed c¢* in the following sense: for any
BE(0,1), lim,_,  X(¢)/t=lim, x(t)/t=c*, where
X(t)=max{x:(x,t)=B} and x(¢#)=min{x >0:(x,?)
=p}. Since it is usually difficult to manipulate the initial
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conditions outside a compact set in any experiment (real
or numeric), this result has been interpreted as proof that
the slowest stable traveling-wave solution is the selected
solution for (2.1). This result was extended to the Fisher
equation with the AW condition in d( > 1)-space in a con-
clusive paper by Weinberger [14] (actually, the paper
contains much more general results). We can summarize
Weinberger’s result as the minimum speed principle for
semilinear parabolic PDE’s: the selected solution always
corresponds to the minimum speed for which there exists
stable front propagation.

Equations of the Fisher type (with the AW condition)
fall into two distinct classes. For ‘“pulled” equations,
c¢*=cy, while for “pushed” equations, ¢*>c¢, [15]. In
the pulled case, the selected solution is marginally stable
with respect to small, localized perturbations applied to
its leading edge (see the Appendix for a discussion of sta-
bility). Essentially, this means that the propagation speed
of the front is the same as that of these small perturba-
tions.

Langer and others [16-18] studied several non-Fisher-
type semilinear parabolic equations and found that these
equations too apparently possess selected solutions which
are marginally stable with respect to perturbations ap-
plied to their leading edges. We will refer to this type of
marginal stability as “linear marginal stability,” and the
solution characterized by this type of stability will be
termed “linearly marginally stable,” following van Saar-
loos [18]. This led them to conjecture that, belying their
nonlinear nature, there is a large class of equations with
propagating front solutions for which speed and pattern
selection are governed by linear order terms only, and
that the selected solution to each such equation is linearly
marginally stable. They were aware, however, that this
conjecture is not generally true, noting that, for example,
the selected solution of the equation

2
W_Y -y 2.2)
at Ox?

with sufficiently large b >0 has a speed larger than c,,.

The work of Langer and co-workers points out a com-
mon feature exhibited by the selected solutions for some
front propagation problems and leads one naturally to
ask in what systems such a feature can be found and how
these systems differ from those in which it is lacking.
Presently, however, there is no general theory which can
answer these questions, and thus there is no general
method to check the prediction provided by marginal sta-
bility theory. In certain cases, though, there are known
methods by which the selected solution can be construct-
ed explicitly. Using one such method, van Saarloos [18]
was able to describe the breakdown of linear marginal
stability theory and show how the nonlinear terms be-
come important for a number of equations.

Some progress has been made toward the goal of ex-
tending the marginal stability idea to systems for which
the linear analysis fails [18]. Here, it is hypothesized that
in the nonlinear case there exists an “invasion mode”
whose dynamics govern the evolution of the system to-
ward its asymptotic solution. A physically appealing ar-
gument is then given that this mode corresponds

to a particular speed, c*, in the sense that if the mode is
allowed to grow, it will eventually travel at this speed. It
is then conjectured that the necessary and sufficient con-
dition for this growth to take place from a perturbation
of some existing solution with speed c is that ct>e Al
though it is not stated, it appears that implicit in this ar-
gument is the assumption that this so-called invasion
mode is the fastest such mode which can be excited by a
physically realizable perturbation. The conclusion then
is that ¢ is the marginally stable speed; all smaller speeds
are unstable with respect to the invasion mode, and all
larger speeds are stable with respect to this and all other
modes which can be excited by physical perturbations.

Although the actual dynamics of these systems are
probably too complicated to be described in terms of the
propagation of such an invasion mode, this idea does pro-
vide an intuitive picture. It may be possible to develop
the concept of nonlinear marginal stability further, but at
this time, it has not been taken beyond the point of a
feasible qualitative description.

In the following section, we discuss what we will term
the structural stability philosophy. We show that applica-
tion of this philosophy leads to a characterization of
selected propagating front solutions.

III. STRUCTURAL STABILITY

Suppose one repeatedly performs the same experiment
on a particular physical system and obtains a set of re-
sults. Since this system cannot be prepared or main-
tained identically for any two experiments, we expect
these results to display a finite degree of variance. If the
variance, however, is consistent within the bounds of ex-
perimental uncertainty, we will say that the system
displays reproducibly observable phenomena.

The basic idea employed in this paper is that a good
model of reproducibly observable phenomena must be
structurally stable, i.e., the physical predictions provided
by the model must be stable against modifications corre-
sponding to perturbations of the physical system being
modeled which alter its behavior only infinitesimally.
(For convenience, we will refer to both small perturba-
tions of the physical system and to the corresponding
perturbations of the model as physically small.) Here no-
tice that we are not perturbing a solution, but the struc-
ture of the system itself.

The idea of structural stability used here is close to the
idea proposed by Andronov and Pontrjagin [19] for
dynamical systems. In their formulation, the model
equation is considered structurally stable if, crudely
speaking, its dynamics are stable against any small
change to its form. Of course, in the modeling of natural
phenomena, we need not require the structural stability
of the entire system, but may have only to require that of
the solution corresponding to reproducibly observable
phenomena. In this case we call the solution a structural-
Iy stable solution. Our conjecture is that reproducibly ob-
servable propagating fronts in physical systems corre-
spond to only structurally stable solutions of (good) mod-
el equations. We wish to call this the structural stability
hypothesis. While we believe that this hypothesis should
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hold for all equations meaningful in science, in this paper
we apply it to the particular class of semilinear parabolic
PDE’s.

Our goal is to identify structurally stable propagating
front solutions (i.e., structurally stable predictions) to cer-
tain semilinear parabolic PDE’s by considering physically
small perturbations of these PDE’s and studying the re-
sulting changes suffered by their solutions. Actually,
since the propagation speed uniquely determines the solu-
tion in many cases, we have only to study the structural
stability of the propagation speed. In what follows, we
consider only perturbations to the function F in (2.1).
Adding a second order time derivative to (2.1) is
equivalent to modifying the diffusion constant for systems
with traveling-wave (i.e., non-pattern-forming) solutions.
A change in the diffusion constant can be absorbed into a
scale change. Adding higher order spatial derivatives
and time-space mixed derivatives with small coefficients
may be interesting, but general experience with singular
perturbation tells us that, excluding the possibility of bi-
furcation phenomena, such perturbations do not affect
the very global nature of solutions. In particular, this
statement is expected to hold for (2.1), and we will there-
fore not consider perturbations of this type.

With a wider application of our structural stability
conjecture in mind, we should note here that bifurcation
phenomena in general represents structurally unstable
behavior. This phenomena, however, is nongeneric in the
sense that it generally occurs at a very small subset of
possible parameter values. Of course we have already im-
plicitly excluded this subset from consideration, since a
physical system described by an equation at a bifurcation
point would not exhibit reproducibly observable phenom-
ena.

Before continuing, let us note further that we will not
consider perturbations which explicitly depend on time
or space coordinates. In particular, we will not consider
space-time inhomogeneous perturbations (noise), al-
though it is natural to expect that structurally stable
solutions are stable against such perturbations. This
point is discussed in Sec. X.

It is easy to show that all propagating solutions of (2.1)
are structurally stable against C'-small perturbations 8F
of F (C! smallness requires not only 8F but also 8F" to be
small). If we wish for our method to isolate a unique
physically realizable solution, then, we must consider
more severe perturbations. Consider (2.1) as describing
the propagation of fire along a fuse. F represents the net
rate of heat production as a function of temperature,
represented by 1. ¥=0 corresponds to the ignition tem-
perature, and ¥y=1 corresponds to the maximum attain-
able temperature. The propagating front thus interpo-
lates between the =0 region before it, where fuel has
not yet begun to burn, and the ¥=1 region behind it,
where fuel is burning at a constant rate. (We can imagine
that fuel is being added behind the front to sustain burn-
ing in this region.) It is reasonable that the observable
properties of such a front would be insensitive to most
small changes in the heat production rate, F. For exam-
ple, choosing a single temperature between =0 and
¥ =1, changing the heat production rate in its neighbor-

hood by a (vanishingly) small amount should alter the ob-
servable behavior only slightly. While the C! norm of
such a perturbation can be made indefinitely large, its C°
norm is small. It is thus natural to consider C%small (but
C-large) continuous perturbations to F.

Many semilinear parabolic PDE’s are not structurally
stable with respect to C%-small perturbations. The Fisher
equation is not an exception. In fact, all of its propagat-
ing front solutions are structurally unstable against cer-
tain C%small perturbations of F. That is, we can always
invent a small continuous perturbation to F which can
cause an arbitrarily large change in the speed of a given
propagating solution; for every number ¢ greater than
some positive minimum value, there exists a sequence of
continuous perturbations converging to 0 in the C° norm,
each element of which gives a unique traveling-wave solu-
tion, and whose corresponding sequence of speeds con-
verges to ¢. If the Fisher equation is a good model of ob-
servable phenomena, this sensitivity to certain C%small
perturbations must correspond to a similar sensitivity of
the actual physical system being modeled.

Again let us consider the fire analogy. Altering F very
near =0 with a C%small continuous perturbation can
result in extremely explosive behavior. For example, con-
sider the case in which a small amount of explosive is
sprinkled uniformly along the fuse. As a result, the rate
at which heat production increases as a function of tem-
perature, dF /dy, can be made arbitrarily large in the
neighborhood of ¥=0, even in the limit of vanishing (o
norm. In this case, the explosive low temperature
behavior will travel very rapidly along the fuse, setting off
the relatively sluggish higher temperature behavior
behind it. The resulting temperature front will thus
propagate with a very large speed and assume a very
long, flat shape.

It is clear then that certain C%small perturbations are
not physically small. The pathological behavior de-
scribed above, however, results only from a perturbation
which increases the quantity supye o, F(¥)/¥] appreci-
ably for some 1>0. We will call a C®-small perturbation
for which sup,,o[8F(3)/¢] is less than some small posi-
tive number (which goes to zero continuously as the C 0
norm of 8F vanishes) a p-small perturbation [20]. Note
that for a given 7, the quantity
Q. (F)=supyeo,q[F(¥)/¢] is lower semicontinuous
with respect to the C° norm of 8F, but it is not upper
semicontinuous. That is, infgrQ, (F+8F)—Q,(F) van-
ishes continuously with the C° norm of 8F for any posi-
tive 1, but supsrQ., (F +8F)—Q, (F) does not for some 7.
If the set of allowed SF is restricted by the p-smallness
condition, however, upper semicontinuity of Q, is in-
sured. Thus p-small perturbations are those CP-small
perturbations for which the following continuity condi-
tion holds: limsp_,oQ,(8F)=Q,(0) for any n>0. Our
conjecture is that p-small perturbations are physically
small for many phenomena described by semilinear para-
bolic PDE’s. In any case, we confine ourselves to p-small
perturbations only. [For convenience, we also require
perturbations to satisfy 8F(0)=0. See [21] for a related
discussion.] The precise form of our structural stability
hypothesis is that the physically realizable solutions of
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(2.1) are those which are stable with respect to p-small
structural perturbations.

IV. SELECTION OF SOLUTIONS

We will refer to semilinear parabolic PDE’s possessing
more than one stable traveling-wave solution for a given
set of boundary conditions as “ambiguous” and those
possessing a single such solution as “unambiguous.” Our
goal is to identify selected solutions to ambiguous PDE’s.
We wish to claim that given an ambiguous semilinear
PDE, there exists a dense set (with respect to the C°
norm of F) of unambiguous PDE’s which can be obtained
from the original by p-small perturbations [21]. The
unique traveling-wave solutions to these unambiguous
PDE’s converge to a unique traveling-wave solution of
the unperturbed ambiguous PDE when the C° distance
from it is reduced to zero. This solution is thus, accord-
ing to our hypothesis, the selected solution of the original
PDE. The analysis of Secs. IV A and IV B applies to any
ambiguous equation of the Fisher form (with boundary
conditions specified) and allows us to identify the selected
solution for each such equation.

A. Mechanical analogy

Assuming a  traveling-wave  solution  (x,t)
=@(x —ct)=@(€) of (2.1), we can convert this PDE into
the following ODE:

4.1)

As is well known, the most convenient way to understand
(4.1) is in terms of the motion of a particle moving in a
one-dimensional potential and subject to a frictional force
with coefficient ¢. This analogy is made explicit through
the identifications £—t, ¢—q, deo/dé—p=¢q, and
F=—F. We then have

p=—cp+FHaq) . (4.2)

The force F(q) has an associated potential V,(g). In a
typical ambiguous case, V|, is monotonically increasing
from ¢ =0 to g =1. A traveling-wave solution to (2.1) in-
terpolating between =0 and ¥ =1 corresponds to the
trajectory of a particle falling from ¢ =1 with zero initial
kinetic energy and coming to rest at ¢ =0. Cast in these
terms, we can interpret ¢ * as the critical value of the fric-
tional coefficient. If c is smaller than this value, the parti-
cle overshoots g=0. This case corresponds to a
traveling-wave solution of (2.1) in which ¥ assumes nega-
tive values. Clearly such a solution is unstable (in the
conventional sense). If F=<0 for all ¢ €[0,1], then for all
¢ 2c* the particle stops at ¢ =0 without overshooting.
(Without this condition on ¥, there may be a supremum
of such values of c.) Hence, for each propagation speed
¢ 2 c* there exists a stable traveling-wave solution.

From this mechanical analogy, it is easy to see that for
a semilinear parabolic PDE to be unambiguous, the po-
tential associated with the corresponding ODE must not
have a local isolated minimum at ¢ =0. That is, either
g =0 i a local maximum, or there is a finite neighbor-
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hood of ¢ =0 where the potential is flat. In this case,
there is a single value of ¢ for which the particle comes to
rest at ¢ =0. We will call this value of ¢ the characteristic
speed of the potential. Furthermore, it is clear that if the
potential has a local isolated minimum at g =0, it is inev-
itably ambiguous. Therefore, the presence of a local
maximum or finite flat neighborhood at ¢ =0 is a neces-
sary and sufficient condition for the unperturbed form of
(2.1) to be unambiguous. For the flat case the unambigui-
ty is demonstrated in [22].

B. Selection

We now consider p-small perturbations of F which pro-
duce unambiguous PDE’s from ambiguous ones. (As
mentioned previously, the set of all such unambiguous
PDE’s is dense in the set of all PDE’s which can be pro-
duced from the original by p-small perturbations.) To
understand the effect of these perturbations on the propa-
gating front behavior of the PDE’s, we will consider their
effect on particle trajectories in the mechanical analogy.
In particular, we will identify the limiting value of the
characteristic speed for such systems as the C° norm of
these perturbations vanishes.

We will refer to the smallest value of ¢ for which the
particle comes to rest at g =0 without overshooting as
the critical speed. In the case that V(g) is unambiguous,
the critical speed and the charcteristic speed are identi-
cal. We will now demonstrate that the critical speed de-
pends continuously on any p-small perturbation of F(q).
Thus c* is the only structurally stable speed and, accord-
ing to our hypothesis, is the selected speed for a propa-
gating front solution of the original PDE.

Throughout this section we consider particle trajec-
tories originating from the point of (global) maximum po-
tential energy ¢, with zero kinetic energy, and leaving
this point in the direction of decreasing g. (For all unper-
turbed systems, g, =1.) To this point, ¢* has been used
to represent the critical speed of the unperturbed system.
We now, however, wish to consider the critical speed of
the system as a function of ¥, and will therefore, in a nat-
ural generalization of notation, use ¢ *(%) to represent
this quantity. Also, in the following discussion, pq(f7,c)
will represent the velocity of the particle and T,(F,c¢) the
kinetic energy, pqz( F,c¢)/2, for the system with force &
and frictional coefficient ¢ when the particle first arrives
at g. For any given ¢ and F we can define g, =max{0,7},
where 7 is the first point (excluding ¢,) at which the
kinetic energy of the particle vanishes. Thus for any
9€1[90,91), py(F,c) is well defined and nonpositive. Let
us call [gq,q, ] the negative velocity interval.

For the proof given below, we need only consider nega-
tive velocity intervals. The following lemmas, which will
be used in the proof, concern pairs of systems for which ¢
and/or ¥ differ. They hold for any point g belonging to
the negative velocity intervals of both systems. With a
slight change of notation, henceforth ¢, will represent the
largest such point, and g, the smallest. Whenever there
is no danger of ambiguity, we will use the abbreviation T;
in place of T,(F;,c).

(i) Consider two systems “1”” and “2” whose frictional
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coefficients are identical, but whose forces #; and ¥,
differ and for which T, (Fy,c)= qu(i72,c). Then 2%,
implies Tq(t71,c)5 Tq(f72,c). In particular, Ty(F,,c)
< To(F,,0) if 0E€[qy,q,] (i.e., if the particles reach g =0).
O

This follows from dT /dg=cV'2T +F. Then

d(T,—T,) —
—‘ahl-—z—=c(1/2T1—\/2T2)+z7,—72 .

Suppose that Ty =T, is not maintained. Then there ex-
ists g at which T, =T, and dT,/dq <dT,/dq (note that
the particles are moving in the direction of decreasing g).
However, since #,2>7%,, this is impossible. Hence once
T, <T, is satisfied, T, can never again be larger than T,.
Then since initially, at g =gq,, T; < T,, the result follows.

(ii) Consider two systems governed by a single force F
but frictional coefficients ¢; and c¢,. Then if
T, (F,e)) =T, (F,c,) and c¢; 2¢y, T, (F,c)) =T, (F,cy)
a

We have T, T, being defined as in (i),
d(T,—T,)
dq
Then exactly the same argument as in (i) demonstrates
(i1).

(iii) Consider two critically damped systems with
forces F; and ¥, and suppose T, [F,c*(F))]
ST, [Frc*(F)].  Then F 25, c*(F)
<c*(F).0

=(C11/-2—11_1—C2'\/2_T'2) .

implies

This follows from (i) and (ii).
(iv) Suppose g5 <g, <q, <q;, 0 =0, and
71+0» qe(qbyqb +d(1)
F=1%—0, 9€(q,,9,1dq)
F,, otherwise .

(4.3)

Then T, (F;,¢)=T, (F,,c) implies T, (F1,¢) STy (Fp0)
for g <g, and any ¢ (>0).0

For ¢ >gq,+dq, 7,2 F,, so that T, (F,,c) < T,(F,c) due
to (i). Hence the frictional force acting on the particle in
system “1” dissipates no less energy than that acting on
the particle in system ‘2> up to this point. After passing
q,, however, the total energies the systems have gained
from their respective forces become identical. Thus im-
mediately after passing q,, T, = T, and since the systems
are identical for all smaller g, the result is clear.

We split the demonstration of continuity of ¢ * into two
parts.

(A) For any €>0 there is 8>0 such that for any C°
perturbation 8F satisfying ¢ *(F)=c*(F+56F), ||8F| <8
implies ¢ *(F)—c*(F+8F) <e.

(B) For any €>0 there is §>0 such that for any C°
perturbation 8F satisfying ¢ *(F)<c*(F+8F), ||6F|| <8
and p smallness imply ¢ *(F+8F)—c*(F) <e.
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Let us demonstrate (A) first. Due to (iii), even if the
force & is not continuous, the conditions T;l < qu and
F=F imply that c*(F)<c*(F). Hence for given
there is a “maximal” perturbation 8%, with C%norm &
which decreases ¢* by an amount more than any other
perturbation of equal or smaller norm, namely

8(>0) g€(0,1]

8%p= 1o, g=0. 4.4)

In order for (i)-(iii) to hold for the unperturbed and
8Fp-perturbed systems, § must be small enough that g,
and g, as defined above exist. Such a 8 can always be
chosen. Now suppose ¢ =c'=c*(F)—e€ in the original
system with force #. Then by definition, To(F,c’)>0.
To(F,c’) depends on F continuously, and thus there is a
positive 8 such that To(F+8Fp,c’)=0. Hence (iii) im-
plies ¢*(F+6Fp)=c*(F)—e. But by construction,
c*(F+8F)Zc*(F+6Fp). (A) has thus been demon-
strated.

We next demonstrate (B). Given a perturbation 8F
with C%norm 8, we wish to consider its following
modified forms:

5= 53 oherwie “s
and
0, g€[1-5,1]
8F,= {8F—28B, q€[1,3] (4.6)
8F , otherwise ,
where 0<fB<4. Repeated use of (iv) shows

T,(F+8F,c)=T,(F+8F,c) for all gE€[0, ;] and any ¢
such that g is in the negative velocity interval of both sys-
tems. Hence c¢*(F+8F,)<c*(F+6F,). Then since
8F <86F, c*(F+8F)<c*(F+8F,) by l(iii), and conse-
quently ¢ *(F+8F) <c*(F+8F,).

Next, note that [8F,| <8(1+2B) for all g€[0,1].
Also, since 8F is p small, there exists a positive function
g(8) such that |8F,(q)| <g(8)q for all g E€[0,1], where
limg_,,g(8)=0. Now we consider the speed of the parti-
cle in the original system with critical damping,
lpy(F,c*)|, and that of the particle for the system with
force F+38F, and frictional coefficient c*+e,
|pg(F+8F,c*+e)|. We will show that for any given ¢,
there exists a sufficiently small 8 such that
|py(F+8Fyc*+e€)| <|p,(F,c*)| for all g E(0,1].

We begin by noting that since €>0,
g (F+8Fpc*+e€)| <|p,(F,c*)| for all gE[1—pB,1]. In
what follows, we will show that even with infinitesimal
positive €, 8 can be chosen such that | pq(f7
+8F,,c*+e)| <|p,(F,c*)| everywhere. This will be
done by showing that if |py (F+8F,,
c*+e)|=|p,(F,c*)| at an arbitrary point g, then the in-
creased amount of energy lost in the dg neighborhood of
this point due to the change c¢*—c*+¢€ is greater than

the increased amount of energy gained due to the change
g—> 7+ 872.
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By considering the linearized equation near ¢ =0 of the
critically damped particle in the unperturbed system, we
find that Ipq(ﬂ,c')l—»[c"/2+\/(c"/2)2—lo]q as g —0.
Thus for sufficiently small 8, |p,(F,c*)|>38'/ for any
g €[8'%,1—pB] [call this condition (a) for 8§]. Now as-
sume [p (F+8Fp,c*+e)|=|p,(F,c*)| for some
§€(8'2,1—B]. In the neighborhood surrounding § of
size dg, the change of the energy gain due to 8%, is not
more than 16dg, while the change in energy loss due to
the change c*—c*+e is not less than €|p,(F,c*)|dg.
Hence if 28 <€5'/? [condition (b) for 8], for values of g
infinitesimally smaller than §, |p,(F+8F,c*+e)l
<lp,(Fc*)|. Thus for ¢=8'7>, |p (F+8F,c*+e)l
S|p(Fe*)l.

We now consider ¢ < . The linearized estimate for
lpq(fi,c" )] can then be made arbitrarily accurate by
choosing 6 as small as necessary. In particular, it can be
chosen small enough that for all g¢<38!3
lp,(F,c*)| Zc*q /4 [condition (c) for 8]. Now, assume
Ipy(F+8F,,c* +e)|=|p,(F,c*)| for some §€(0,8'7).
Then the change of the energy gain in the dg neighbor-
hood of this point due to the perturbation of F is no
greater than g(5)q dg, while the change of energy loss
due to the change of c is no less than ec*q dg /4. Thus if
g(8)<ec*/4 [condition (d for 8], then
pg(Foc*)| > |p (F+8Fpc*+e€)| for values of ¢
infinitesimally smaller than §. & can always be chosen
small enough that conditions (a)-(d) are satisfied. Hence
T, (F+8Fpc*+e)= T,(F,c*) for all g€(0,1]. Thus ei-
ther T, (F+8F,c*+e€)=0 at some ¢>0, or

lirr:) T, (F+8F,,c*+€)=0. In the latter case, due to the
q—é

continuity of the kinetic energy, To(F+8F,,c*+€)=0.
In either case we conclude that ¢*(F+8F,) <c*+e. We
have thus demonstrated (B).

An intuitive understanding of the continuity theorem
we have just proven can be obtained by considering the
following. Since the origin of the unperturbed particle
system is a local minimum of the potential, there exist
multiple trajectories corresponding to stable traveling-
wave solutions of the PDE. If we place a small bump
peaked at the origin, however, only one of these survives.
If this bump represents the only perturbation of the sys-
tem (that is, if the perturbation serves only to slow the
particles), then the critically damped trajectory and all
overdamped trajectories are destroyed (kept from reach-
ing the origin). But in the limit that the size of this bump
goes to zero, the value of ¢ corresponding to the unique
trajectory terminating at the origin (without overshoot-
ing) converges to c¢*, the minimum speed of the original
PDE. In this sense, the critical trajectory is restored. In
fact, we have shown that even in the case that the origin
remains a local minimum, the speed of the slowest stable
solution always converges to c¢* as the C° norm of the
perturbation vanishes. The smallest speed solution is
therefore structurally stable. For discussion of the
reasoning which motivated the above continuity theorem,
see [23].

We have shown that for the Fisher equation, the
structural stability hypothesis implies the minimum speed
characterization. With the AW condition, this charac-
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terization is rigorously established. The structural stabil-
ity hypothesis is thus confirmed for equations of the Fish-
er form satisfying the AW condition.

C. Comment: Structural stability of ODE’s

Since a traveling-wave solution of (2.1) corresponds to
a saddle connection in the (p,dgp/d§)-flow field corre-
sponding to the ODE (4.1), there may exist the miscon-
ception that such a solution cannot be structurally stable.
To avoid such a misconception, we summarize here the
result of Sec. IV B in terms of (4.1) and its flow field.

For the unperturbed ODE, there is a saddle connection
terminating at (0,0) corresponding to a stable traveling-
wave solution of (2.1) for each value of ¢ 2 c¢*. If we con-
sider some ¢ > c*, perturbing (4.1) with a p-small §F (¢, )
whose application to (2.1) results in an unambiguous
PDE, then for all sufficiently small 8, the saddle connec-
tion is destroyed. In addition, even in the § — 0 limit, this
connection can be restored only if c is altered by a finite
amount. Next, we consider the case c=c*. Applying
the same 6F(g,5), the saddle connection can be des-
troyed, but in this case, in the §—0 limit it can always be
restored by altering ¢ only infinitesimally. Thus consider-
ing the totality of flow fields in (¢,d@/d¢§,c) space, the
only structurally stable saddle connection corresponding
to a stable traveling-wave solution of (2.1) is that with
c=c*.

V. PHYSICAL IMPLICATIONS

By imposing the condition of structural stability, we
have been able to single out a particular traveling-wave
solution to (2.1) as being the only meaningful one physi-
cally. For the more restricted case in which the AW con-
dition is imposed, this solution is the same as that found
by Aronson and Weinberger [12]. This fact is reassuring,
but at the same time it is somewhat mysterious. The
physical arguments used in this paper and those used by
Aronson and Weinberger are completely different. In
this section we consider the time evolution of the PDE
(2.1) and discuss in this context the nature of physically
realizable and unrealizable traveling waves. From this
discussion, we are able to identify the fundamental
feature distinguishing such solutions, and gain an under-
standing of the physical implications of structural stabili-
ty in the present problem. As a result, it becomes intui-
tively clear why the slowest solution to (2.1) is structural-
ly stable. Although we restrict the present discussion to
AW-type equations, we believe the conclusions to hold
for a more general class of semilinear parabolic PDE’s.

Consider an equation of the form (2.1) satisfying the
AW condition, and suppose its selected solution ¢*(x,7)
has speed c*. (Throughout this section, the variable ¢
will be used to represent asymptotic solutions, i.e., travel-
ing waves, while ¢ will be used to represent solutions of
the PDE evolving from initial conditions set at some
finite time.) Viewed from the frame moving at spee‘d c*,
#*(x,t) approaches zero asymptotically as ~e % * for
some positive k*, as can be inferred from the linearized
form of the original equation around ¥=0. (Without loss
of generality, we will consider only fronts which propa-
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gate in the +x direction.) We now argue that the funda-
mental feature which distinguishes ¢* from all ¢ >c* is
that it is the propagation speed which is determined by
the bulk, that is, the region behind the front’s leading
edge. In the pushed case this is not surprising, but the
point is that this distinction holds even in the pulled case.

For a given solution (x,?), we will say that at
time ¢, the leading edge decays as ~e ko f
limsup, _, ,[In¥(x,t5)/x]=—k[k E(0, 0 )]. When this
is — o0, or when ¥=0 beyond a finite domain, we will say
that the leading edge is trivial. We define the leading
edge of ¥(x,?) to be the region displaying this asymptotic
behavior. It should be noted that in general, this leading
edge does not contain the entire “linear region,” i.e., the
region in which ¢ is small enough that it evolves accord-
ing to the linearization of (2.1).

Suppose that we have a set of initial conditions ¥(x,0)
(0= <1) which decay as ~e ~** in the +x direction. If
k > k*, the analysis of Aronson and Weinberger [12] can
be used to show that the speed of ¥(x,?) converges to c*
as t— oo in the sense described in Sec. II. According to
the comparison theorem [24], convergence in the present
case must be at least as rapid as in the case that (x,0) is
confined to a finite support. Despite this fact, the leading
edge of ¥(x,?) retains the form ~e ~** for all time. This
leading edge will propagate with speed c=k+1,/k,
where [,=F ’(¢)I,/,=0, as seen from the linearized equa-
tion around ¥=0. As is well known [18], k* Zl(l)/ 2 and
thus ¢>c*=k*+1,/k*. This holds for any value of
k > k*, and thus in each such case, the form of the lead-
ing edge of ¢¥(x,?) is well defined, and the convergence of
its speed to ¢ * is independent of this form.

Next, consider ¥(x,0) as described above, but with k
satisfying ko, <k <k*. Here, ko=sup(Q), where Q is the
set of all wave numbers characterizing the asymptotic re-
gion of those stable traveling-wave solutions with ¢ >c*.
(Only in the pulled case is ko=k* [18]). In this case, a
straightforward extension of the arguments used by
Aronson and Weinberger shows that the propagation
speed of ¥(x,?) again converges to c¢* [25]. This is in
spite of the fact that the solution’s leading edge retains
the form ~e ~** for all time. Thus again, for initial con-
ditions of the type in question, convergence of the propa-
gation speed to c* is independent of the form of the
solution’s leading edge.

Finally, in the case that ¥(x,0) is defined on a compact
support, the form of the leading edge is trivial for all
time. These three cases demonstrate that the speed c* is
characteristic of those solutions whose asymptotic nature
is independent of the form of their leading edge. In this
sense, ¢ * is selected by the bulk.

We next consider initial conditions ¥(x,0) decaying
asymptotically as ~e ~**, where k <k,. Here again, we
can apply a straightforward extension of the arguments
used by Aronson and Weinberger to show that the speed
of ¢¥(x,t) converges to c=k+Iy/k>c* [25] (see also
[26]). Conversely, to produce a front with speed c greater
than c*, initial conditions decaying as ~e —kx where
k=1(c - c?—4l,), are required. Thus propagation
speeds greater than c* are characteristic of solutions
whose asymptotic nature is determined by the form of

their leading edges.

We would like now to contrast the present point of
view with what seems to be a commonly held misconcep-
tion concerning the role played by the tip in the evolution
of a solution of (2.1). Considering the pulled case, the
selected speed of (2.1) can be calculated correctly by con-
sidering only the asymptotic (in x) region of the solutions
and the linearization of (2.1) about ¥y=0. Such a calcula-
tion yields both the speed and the asymptotic form, i.e.,
the leading edge, of the selected solution. In this case,
since the correct speed can be obtained by considering
only the asymptotic region, it is perhaps natural to con-
clude that it is this region which controls the evolution of
the solution ¥(x,#). That is, the leading edge behaves in
whatever manner it “desires,” independent of the bulk re-
gion behind it which is simply pulled along at the speed
chosen by the leading edge. We will now show why this
conclusion is incorrect.

It is first important to note that the asymptotic form of
solution obtained from the linear calculation referred to
in the previous paragraph is that of the steady state solu-
tion. When we consider an actual solution of the PDE
evolving toward this selected steady state, the form of its
leading edge and that of the steady state solution are, in
general, unrelated. As discussed above, the leading edge
form of a solution to (2.1) is for all time determined by
the initial conditions. In fact, the quantity
o=limsup, _, . [Iny¥(x,?;,)/x] is independent of time.
This statement holds for both the case in which the speed
c* is realized asymptotically and that for which some
larger speed is realized. If 0 €[ — o, —k*], the asymp-
totic (in ¢) form approached by ¥(x,?) is ¢*(x,?). Conver-
gence toward this steady state proceeds from the bulk to-
ward the tip (except, of course, in the case where
o=—k*). The exp(—k*x) form characterizing the
selected solution begins to develop in the bulk, and the
steady state is approached as this form pushes out toward
the asymptotic region. In the process, the maximal am-
plitude of the asymptotic region gradually decreases to-
ward zero. Despite this bulk invasion, of course, the
leading edge of ¥(x,?) whose form and speed c (c >c*)
are set by the initial conditions persists for all time. Thus
although it is true that this leading edge behaves in what-
ever manner it desires, and the speed at which it propa-
gates is independent of the bulk behavior, the bulk is not
pulled along at this speed, and in fact convergence to
#*(x,1) is unconstrained by the leading edge.

In the case that o> —k*, the speed approached
asymptotically is greater than c¢*. Here again, o is time
independent, but in this case, the asymptotic (in x) form
of the solution to the PDE and that of the steady state to
which it is converging are identical. For such values of
o, convergence toward the steady state proceeds from the
tip toward the bulk, and the bulk is truly pulled along at
the speed determined by the leading edge.

We conclude that the speed c* is realized when the ex-
ponential decay characteristic of the steady state is al-
lowed to originate in the bulk and spread forward toward
the tip. When this behavior is prevented by the initial
conditions, ¢ >c* behavior results. In the former case,
the form approached by ¥(x,?) as t — o« is independent
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of its leading edge. In the latter case, this form is dictat-
ed by it.

We are now afforded a qualitative understanding of the
meaning of structural stability as it applies to (2.1). A
traveling-wave solution to (2.1) (with the AW condition)
is structurally stable if and only if its speed is determined
by the front’s bulk rather than its leading edge. This con-
clusion is intuitively very appealing, and in fact we be-
lieve that it holds not only for (2.1), but indeed quite gen-
erally. Since the bulk behavior displayed by any given
model equation corresponds to physical phenomena
which, in principle, should be measurable, it must be the
case that the bulk behavior of a structurally stable solu-
tion is altered only slightly by a small perturbation. On
the other hand, tip behavior does not correspond to any
reproducible, physically measurable quantity, and there-
fore structural stability of a solution does not require the
form of the tip to be stable against small perturbation. In
fact, it is very reasonable that in general the tips of prop-
agating front solutions are easily destroyed (i.e., altered
drastically) by certain small perturbations. For this
reason, any solution whose physically observable quanti-
ties (e.g., propagation speed) depend on the nature of the
tip should be structurally unstable. Those solutions
whose physically observable quantities depend on the
bulk, however, should be structurally stable. Based on
this reasoning alone, it is also an intuitively appealing
conclusion that only these structurally stable solutions
represent physically reproducible behavior. Once again
let us consider the fire-fuse analogy to illustrate this
point. We imagine the fuse to be covered with a very
thin film of water which quickly evaporates when heated
to a temperature slightly above ¥=0. As a result, the
flammability of the fuse is slightly decreased, but only
very close to its ignition temperature. For the hypotheti-
cal large speed propagating flames, though, this small
perturbation would be fatal. That is, even if it were
somehow possible to give the unperturbed system the un-
physical initial conditions required to realize a solution
with ¢ > c¢*, it would not be possible to do so for the per-
turbed system. This perturbation singles out—even in
the hypothetical situation in which any initial conditions
could be realized —that speed which can be realized by
the unperturbed system given physical initial conditions.
Such a perturbation can therefore only slightly alter the
realizable propagation of fire along the fuse.

For structurally unstable solutions, the form of the
asymptotic decay of the leading edge determines the
speed, which in turn determines the interface profile. For
this reason, if we apply to (4.2) a perturbation such as

a—dq?, lql<(a/d)”?

V(@@= 1g1>(asd)?,

(5.1

with d >d?*V, /dq2|q=0, then in the a —0 limit, all solu-
tions are destroyed except that with ¢ =c*. In this limit,
the perturbation of (2.1) corresponding to the bump at
q=0, (5.1), affects only the leading edge of any given
propagating front. Only that single propagation speed
which is selected by the bulk, and not the leading edge,
can survive such a perturbation. It is clear that such a

solution represents the slowest stable propagating front
since any slower front must be unstable with respect to
the bulk invasion.

The above discussion has lead us to the following con-
clusion: for semilinear parabolic equations, any set of
physical initial conditions produces a solution which con-
verges to a traveling wave whose nature is independent of
the form of this solution’s leading edge. Because of this
independence, this traveling wave represents a structural-
ly stable solution.

With the present understanding, it becomes intuitively
clear why the propagation speed c* is easily observed
when (2.1) is numerically integrated. If this speed were
determined by the tip of the front, discretization, no
matter how fine, would represent a drastic perturbation,
and we would expect observable propagation speeds to
differ from c* appreciably. Since ¢* is determined by the
bulk, however, discretization represents only a very mild
perturbation, and in fact, independently of the details of
the particular numerical scheme used, propagation
speeds arbitrarily close to ¢* can be observed.

VI. MULTIPLE-MODE SYSTEMS

We saw above that the selected solution to any PDE of
the form (2.1) corresponds to the critically damped parti-
cle trajectory described by (4.2). Cast in terms of classi-
cal mechanics, the special nature of the propagation
speed ¢ * becomes apparent. By applying a slight pertur-
bation to V,(g), all trajectories can be “destroyed” (i.e.,
kept from reaching the origin) except that one corre-
sponding to a particular value of ¢ slightly different from
c*. There is nothing in this statement, however, that ap-
plies uniquely to particles in 1-space. It thus seems quite
likely that the structural stability arguments could be ap-
plied to systems of equations reminiscent of (2.1), but
describing the invasion of several coupled modes, in
much the same way they were applied above.

In analogy to the previous section, we conjecture that
for multiple-mode systems, p-small perturbations are
physically small [27]. We then note that for any sequence
of perturbations converting an ambiguous N-mode PDE
into a sequence of unambiguous PDE’s, there corre-
sponds a unique sequence of trajectories representing
stable traveling-wave solutions. Our structural stability
conjecture is that if these perturbations are p small and
their C° norm converges to 0, the associated sequence of
propagation speeds converges to the selected speed of the
original, unperturbed PDE.

Before proceeding, we note that we have not yet been
able to obtain a characterization of the structurally stable
solutions for systems possessing linear order coupling
terms. We are thus forced to consider only linearly
decoupled equations. In this case, we can again establish
the critical damping characterization of structurally
stable propagating solutions. Equations exhibiting linear
order coupling terms will be discussed later.

We will study N-mode systems whose ith mode behaves
according to

Y

—- =D,V +F, (¥, . ...

. 6.1
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Without loss of generality, we assume that
¥,=(0,0,...,0) and ¥ =(1,1,...,1) represent unstable
and stable stationary solutions of (6.1), respectively. We
will study traveling-wave solutions to (6.1) interpolating
between 4, and ¥,. We assume that F;=b;y; + (higher
order terms). Thus in a sufficiently small neighborhood
of the origin, these equations are virtually decoupled. We
wish to study systems in which ¢, is linearly unstable
with respect to perturbation by any mode. Thus we as-
sume b; >0 for all i. We consider the case in which there
is a unique direction of propagation along which all
modes propagate with a single speed. In addition, we as-
sume that the spatial variation of each mode is confined
along the direction of propagation. (6.1) can then be
written as an ODE describing the motion of a particle in
N space if we make identifications analogous to those
which led to (4.2) for the N =1 case. For the ith mode,

D;p;=—cp;+F(q) . 6.2)

This ODE becomes effectively decoupled into N indepen-
dent second order equations in some neighborhood D of
the origin.

For any solution to (6.1) of interest, the corresponding
particle stops at the origin. Therefore its motion is even-
tually confined to D. Although we cannot claim that all
modes are positive in this domain, stability of the solu-
tion in the ordinary sense requires the existence of a small
neighborhood of the origin in which no mode changes
sign.

In N space, the particle trajectories again depend on
the frictional coefficient ¢, but now, they also depend on
the initial direction n which the particle takes as it leaves
the starting point, q;=(1,1,...,1). (In those cases in
which the force acting on the particle can be derived
from a potential, this point can be interpreted as the top
of an N-dimensional hill.) Because of this, the idea of
critical damping requires some special attention.

For the trajectory corresponding to n and ¢, denoted
by (n,c), we define 7;(n,c) to be the largest time at which
the coordinate g; changes sign (arbitrarily defining =0
to be that time at which g, =7). If g; never changes sign,
we define 7;(n,c)=0. If g; changes sign at indefinitely
large times, 7;(n,c)=o. As noted above, such a trajec-
tory corresponds to an unstable solution of the PDE. We
will call the trajectory (ng,c,) critically damped if
7;(mg,cq) is finite (or zero) for all i, and if there is a se-
quence S of trajectories which converges to (ng,¢,) such
that S-lim(n,c)_*(no,%)f,.(n,c )=o for all i, where S-

limy,¢) . (n,,c,) denotes that the limit is taken by ap-

proaching (ny,c) along S.

For (n,c)ES, let us designate by T;(n,c) the kinetic en-
ergy associated with the ith coordinate at the last time it
changes sign. If no such time exists (i.e., if this coordi-
nate changes sign indefinitely), define T;(n,c)=0. Then
note that S-lim, ) () Ti(m,c)=0. Also note that if

no coordinate of a given trajectory (ny,c,) ever changes
sign, and if there exists a sequence of trajectories S con-
verging to (ngy,cy) such that each mode of each trajectory
changes sign at least once, then (ng,c,) must be critically

2377

damped. This simply follows from the fact that the
kinetic energy associated with g; [measured at any given
(q,t)E(n,c) which changes continuously as a function of
(n,c)] must be a continuous function of (n,c). Thus the
sequence of “overshooting” trajectories S must satisfy S-
limpy ¢y, (ng,c,)7i(m,¢) = oo for all i.

We will now show that the structural stability hy-
pothesis implies that a physically realizable solution to
any equation of the form (6.1) must correspond to a criti-
cally damped trajectory. We demonstrate this by show-
ing that a particular type of small perturbation placed
near the origin is able to destroy all trajectories satisfying
7; < o for some i. Essentially, we use the fact that near
the origin, the N-dimensional trajectory becomes decou-
pled into N one-dimensional trajectories, and if 7; < «,
near g; =0 the ith such trajectory is analogous toa c >c*
trajectory of the Fisher equation. For this reason, trajec-
tories for which 7; < o for all i but which are not critical-
ly damped will be referred to as overdamped.

We consider traveling-wave solutions of (6.1) interpo-
lating between ¥, and ¥,. A trajectory starting at q, and
corresponding to a physically realizable solution of this
type must therefore satisfy lim, , ,g;(z)=0 for all i.
Since any solution of (6.1) for which 7; = « for some i is
(linearly) unstable, for any physically realizable solution,
all 7; must be finite. In order to show the desired result,
we will consider certain p-small perturbed forms of (6.1)
and show that for such equations, in the limit of vanish-
ing C° norm, the sequence of 7; corresponding to any se-
quence of surviving trajectories (i.e., trajectories which
are able to come to rest at the origin) diverges for all i.
Then by the definition of critical damping, and according
to our structural stability hypothesis, we are able to con-
clude that physically realizable solutions to (6.1) must
correspond to critically damped trajectories.

We limit our study to those systems for which any tra-
jectory corresponding to a physically realizable solution
of the PDE does not converge to the origin at any finite
time. The pathological case in which lim,_, roq,-(t)=0 for

all i and some finite ¢, is ignored. Clearly, for linearly
decoupled systems, such a case would require a ‘““finely
tuned” PDE which, upon slight perturbation would no
longer display this pathological behavior. In this sense,
such a situation is not generic.

Consider a perturbation of the particle equation of
motion given by

F.(q)—Fi(q)— -8¥(q) .

3, (6.3)

We choose 8V to take the form of a small bump around
the origin. More precisely, 8V (q) is continuously
differentiable, and 8F;(q)=(3/9q; )8V (q) satisfies the fol-
lowing properties for all i: 8F;(q)=0 for |q|=35,
max|8F;(q)| <8, and sgn[8F;(g;)]=sgnl(g;) at all points,
where sgn(x)=+1 for x 20, and —1 otherwise. Note
that in the §—0 limit, the force to which the particle is
subject for |q| < 8 is derivable from the potential
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ViQ)=13 bg?+8V(q) . (6.4)

We choose 8¥(q) so that (3%/3¢7)V(q)l, o <0 for all
|ql <& and all i, and so that very near the origin, V(q)
J

8%a, |1+cos .
57,(q,8)=1 5%
0 elsewhere ,
1/27-1
T
k1=a117'[8 1+cos quH ,

and 8V, is obtained by exchanging 1 and 2 in (6.5).
Then, for example, setting a; =min{1/200b;,b; /200} and
a;=max{10b;,10/b;}, all of the above conditions are
satisfied.

Consider some unperturbed trajectory (n,c) for which
7:(n,c)=7; < . For any such trajectory, we can consid-
er a time large enough that, to arbitrary precision, for all
later times the trajectory is decoupled into N independent
one-dimensional trajectories. Then, considering the sys-
tem perturbed by a 8V such as that constructed in the
preceding paragraph, we can choose & small enough that
the particle does not encounter the perturbation until ar-
bitrarily large time. We can thus think of the trajectory
as first decoupling, and at a much later time suffering a
perturbation. In the 8—0 limit, the perturbation is
confined to an infinitesimally small neighborhood of the
origin, and for all trajectories of interest, the particle
reaches this neighborhood with infinitesimally small
kinetic energy. Such a trajectory is therefore unable to
return at later times to the unperturbed coupled region.
In the same limit, the time #, at which the particle first
reaches the perturbed region satisfies ¢y, > 7; for any finite
;. Near the origin then, and for |q| =8, the particle in
question is completely analogous to that studied in Sec.
IV A and IV B with ¢ >¢*. For |q| <8, §F; can only re-
pel ¢; from 0. Thus in the perturbed case as the unper-
turbed case, ¢; cannot reach O at finite time.

Now, assume that this perturbed trajectory converges
to the origin in the ¢ — oo limit. Then in this limit, the
system again decouples into N independent trajectories.
Considering ¢; (50), we have D;p; = —cp; +a;q;. A sim-
ple analysis shows that lim,_ ,[q;(¢)]=0 requires
Ip;(g:)| > 1p2g;)| for all such g;, where |p?| is the particle
speed in the unperturbed case. However, since
sgn[8F;(q)]=sgn(g,), in fact |p;(g;)| <|p2gq;)| at all g,
along the trajectory. Thus lim,_, ,g;(¢#)7-0, and this tra-
jectory is destroyed by the perturbation. We thus con-
clude that any unperturbed trajectory of interest for
which 7;(n,¢)=7; < o for some i can be destroyed by the
type of perturbation in question for arbitrarily small
8> 0. The selected solution must therefore correspond to
a critically damped trajectory.

While critical damping is a necessary condition for
structural stability, in the multiple-mode case we cannot
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reduces to ¥(q)=—13 4,97, where a; >0 for all i. Such
a perturbation can be constructed for any equation con-

sidered in this section. We give an illustration here for
the case N=2. Define 8V =8V +8V,, where

[1+cos(k g,)], lg,1 <8, lg,| <m/k,

6.5)

—

claim that it is sufficient. Because they are not confined
to a single spatial dimension, we cannot exclude the pos-
sibility that there exist trajectories for multiple-mode sys-
tems which, although critically damped, are not able to
survive certain p-small perturbations. (That is, for such
perturbations, no trajectory in the neighborhood of this
critically damped trajectory terminates at the origin.)
Also, structural stability is not in general a sufficient con-
dition for physical realizability in multiple-mode systems.
In contrast to single-mode systems, structurally stable
solutions of certain PDE’s can be unstable in the conven-
tional sense. In any case, if for a given PDE there exist
no solutions stable in both senses, then this equation does
not provide a good model of reproducible physical phe-
nomena.

We should also note that the arguments given here do
not necessarily support the minimum speed conjecture in
the multiple-mode case. In particular, there may exist a
direction n which possesses no critically damped trajecto-
ry, but for which there exist overdamped trajectories cor-
responding to values of ¢ smaller than that of any critical-
ly damped trajectory. If such a case exists, however, it is
likely that the solutions of the PDE corresponding to
such slow overdamped trajectories would be unstable
with respect to a faster critically damped solution. Thus
we believe that even in the multiple-mode case, the
minimum speed characterization remains valid.

In summary, for an N-mode linearly decoupled semilin-
ear parabolic PDE providing a good model of a physical
system which exhibits repeatable propagating front phe-
nomena, the structural stability hypothesis implies that
the selected solution must be critically damped. In addi-
tion, because for the multiple-mode equations studied
here, as the single-mode equations studied earlier, only
the physically realizable solutions are able to survive per-
turbation by a tiny “bump” at the origin, we believe that
only these solutions are “bulk driven.” For this reason, it
is quite likely that any front propagating at a speed
slower than the physically realizable one would be unsta-
ble with respect to the bulk invasion. Thus we conjecture
that here again, the critical damping and minimum speed
characterizations are equivalent.

In Sec. IX, we will consider PDE’s for which multiple
physically realizable solutions exist. For such equations
there are natural families of solutions, each correspond-
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ing to a distinct stable fixed point of F(¢) (or, in terms of
the particle description, a distinct local maximum of the
potential when such exists). To each such family there
corresponds a structurally stable solution, and following
the above reasoning, we believe that in each case this
structurally stable solution is the slowest member of its
family.

VII. LINEAR MINIMUM SPEED ANALYSIS

For the single-mode equations we have been studying,
the structural stability condition supports the minimum
speed hypothesis. The situation for multiple-mode equa-
tions is not as clear, but here again we conjecture that the
physically realizable solution of a particular equation is
the slowest stable one. Apparently the minimum speed
characterization is generic to (at least many types of)
semilinear parabolic PDE’s. In this section we introduce
a method to calculate propagation speeds for these PDE’s
which exploits the minimum speed condition. Although
this method employs only a linear calculation and can
therefore not be used for equations whose realizable
propagation speeds depend on nonlinear terms, it appears
to be at least as powerful as marginal stability theory.

We consider the general N-mode coupled semilinear
parabolic PDE,

Y /at=DV*y+F(¢), (7.1)

where D is an N XN real matrix. Assuming a traveling-
wave solution, and considering the linear (large £=x —ct)
regime, ¥ is given by A exp(—k¢£), where A is a constant
(i.e., independent of &) N vector, and we have

(k*D+F—ck)A=0, (7.2)

with F being an N XN real matrix. To solve for ¢, we
need only find the eigenvalues A;(k) of k2D+F. We then
have speeds c;(k)=A;(k)/k. Each function c;(k) corre-
sponds to a branch of eigenvalues of this matrix and
represents the speeds of the associated propagating solu-
tions described by (7.2). At this time, we restrict our at-
tention to only those equations for which all ¢;(k) are real
for all values of k >0. (k must be positive by assump-
tion.) Assuming the propagating front behavior of (7.1) is
described by the linear equation (7.2), we now set out to
determine which speed is realized in a physical system.
For the case N=1, we know that the physically ob-
servable propagation speed is that of the slowest stable
front. In the case that this speed is determined solely by
linear order terms, this speed corresponds to the
minimum of c¢(k). Any propagation speed corresponding
to a different value of k cannot be realized from initial
conditions defined on a compact support. For the general
N-mode (linear) case, we conjecture that the analogous
statement holds. That is, only if a solution corresponds
to the minimum of some branch of speeds c;(k), can it be
realized from physical initial conditions. Furthermore,
we assert that although only one of these speeds is realiz-
able, all unrealizable minimum speeds can appear in the
form of transient disturbances. Note that if no ¢;(k) has
a minimum at any value of k >0, or if no minimum has
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positive value, our conjecture implies that no traveling-
wave solution can be realized through the application of
physical initial conditions.

Stated more explicitly, our conjecture is that the appli-
cation of physical initial conditions excites the system in
such a way that asymptotically (for the moment, ignoring
the role played by the nonlinear stabilizing terms) ¢(x,?)
approaches a solution consisting of a superposition of
wave forms, each converging to a steady state solution of
the linearization of (7.1). These steady state solutions
correspond to minima of the functions c;(k). Given a set
of initial conditions, there exists a set of such steady state
solutions which are excited in this sense. Then as t— o,
the wave form converging to the fastest such solution will
establish itself ahead of all others, and all slower distur-
bances will be destroyed by the nonlinear stabilizing
terms in the wake of this fastest front. The fastest
member among the set of excited solutions will thus be
selected. Finally, we conjecture that for “almost all” ini-
tial conditions, all minimum speed solutions are excited
and thus that the fastest speed among the set of minima is
selected.

Let us consider an example. The equations

9y
ar =V2¢1+1/’1 +%‘/’2_¢% ’
(7.3)
31[12 —2 1 3
?—V ¢2+¢2+7'/’1_'/’2 ’
when linearized about zero yield
9y
a—tl =V2¢1+¢1+%¢’2 s
(7.4)
all}Z w2 1
oVt
Equation (7.4) has eigenfunctions (¢1,9,)

=L)AL, exp(—kg) and ()1, —1exp(—k§),
with corresponding speeds k +3/2k and k+1/2k. The
minimum speeds occur at k=1/3 and k=\/_%, where
c¢=v'6 and c=V?2, respectively. We can write an arbi-
trary set of initial conditions (¥3(x),¥2(x)) as
(L)1, 1)y (x)+ (1721, — 1)hy(x). Since D is a sca-
lar, in the linear (small ¥, and ,) region of the resulting
traveling-wave solution of (7.3), symmetric and antisym-
metric functions evolve independently. In addition, we
assume the functional form of the linear region of any
realizable traveling-wave solution of (7.3) is independent
of the nonlinear terms for all time. Thus the asymptotic
(in time) nature of the linear region should be determined
by the fastest linear mode, unless 4 ,(x)=0. We therefore
conclude that if h,(x)70, the ¢=V6 traveling-wave
solution of (7.3) will be realized, but if h,(x)=0, the
¢ =V"2 solution will be realized. We checked this con-
clusion numerically by giving (7.4) many different sets of
initial conditions for which h;(x) was not identically
zero, and in each case, the symmetric steady state solu-
tion was realized (V6~ 2.45, while the speeds found nu-
merically for all such initial conditions were ¢ =2.44). It
should be noted that this was found to be the case even
when h,(x) was as small as ~1073h,(x). However,
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TABLE Il. cp.cmin represents the speed of the fastest
minimum speed traveling-wave solution for each of the four
equations in question, (7.5)=(7.8). ¢, is the propagation speed
found by numerically integrating these equations after defining
some nonzero set of initial conditions. In each case, the numeri-
cal calculation was repeated for several sets of initial conditions,
and in each case no dependence of the asymptotic speed on ini-
tial conditions was observed. The discrepancies between values
of Cpaxmin aNd Coum Was found to decrease continuously with in-
creased numerical precision.

Eq no. C max-min Cnum
(7.5) 3.88 3.86
(7.6) 5.30 5.29
(7.7) 5.98 5.96
(7.8) 2.45 2.46

when 4,(x) was set identically to zero, the disturbance
asymptotically approached the antisymmetric solution
(V2=1.41, while numerically we found ¢ =1.42).

In general, the evolution of ¥(x,?) in a coupled N-mode
system is not as simple as that in (7.4), because D is not,
in general, a scalar. However, we believe that as in that
case, for any N-mode equation of the type in question, the
fastest member of the set of minimum speed solutions is
excited by all but a measure zero set of initial conditions.
Thus this solution should be the physically realizable one.
We checked this claim for the following equations. Re-
sults of this study are listed in Table II. In all cases, these
results are consistent with our conclusion.

8

a—1:2V2¢1+¢1+%¢2“¢? ;

50 (7.5)
==V 3 L — 0

3

“aTl=2V21/’1+V2¢2+2¢1+¢'2—¢’? )

30 (7.6)
S =Vt V2t
2w, + 2V b+

1/} (7.7)
== Vit b —

_ﬂ_ 2 V2 + o —

e A T A SR Tl

oy (7.8)
=, =2V iV —u

VIII. NUMERICAL EXAMPLES

A. Single-mode systems

For AW-type equations, the max-min principle
confirms the minimum speed (or critical damping) char-
acterization made in the previous section. However, for
non-AW-type equations, there exists no rigorous
confirmation of this characterization. We wish to make a

check of our predictions in this case as well, and do so
below for one particular equation. In this case, through
numerical study, we obtain results consistent with the
minimum speed characterization implied by the structur-
al stability hypothesis.

We consider the following PDE:

W _3Y o s
VR A o (8.1)

Because F '(¢)I¢=0=O, this is not of the AW type. As-
suming a traveling-wave solution to (8.1) yields

_ﬂ 4 | 2 3_

JE +c dE +¢"—¢@°=0. (8.2)
Using the method outlined by van Saarloos [18], the
slowest stable traveling-wave solution can be determined
explicitly. We find ¢*(x, t)—{H-exp[(x——ct)/\/Z]]‘1
where the propagation speed is ¢ =1/v2=0.7071. All
traveling-wave solutions with speed ¢ > 1/V"2 decay more
slowly than an exponential in the x — o limit. We nu-
merically studied (8.1) by perturbing the ¥=0 solution
and then integrating to large enough time that a
traveling-wave solution was realized. The speed of the
selected solution of (8.1) was thus found to be ¢ =0.7070.
We then numerically determined the critical value of ¢
for (8.2), finding ¢ =0.7071. The minimum speed charac-
terization is therefore confirmed.

Though to this point our analysis of single-mode equa-
tions has been limited to those of the Fisher form, we be-
lieve that the minimum speed characterization of selected
solutions applies more generally. It is easy to imagine
equations more complicated than (2.1) which can
nonetheless be cast into the particle-on-a-hill form and
for which the arguments of the previous section should
remain valid. In particular, this should be the case for
many ambiguous PDE’s whose corresponding particle
equations of motion assume (or at least approach) the
form p = —cp + F(q) near the “bottom of the hill,” ¢ =0.
We now consider one such PDE and obtain results con-
sistent with this conclusion.

Due to its |31 /3x | dependence, the equation

¥ _3 | _ .
5~ agz T¥[1+a® | |5 e(1—[y)), 8.3)

where a and b are positive constants, is not of the Fisher
form. (Here, O is the step function. We should note that
the singularity it introduces is not essential.) Assuming a
traveling-wave gives

LA 12 PR
ag " ‘ag

de | _ lel)=
'dg' b”O(l lpl)=0

(8.4)

Again, through numerical computation, we found speeds
of selected traveling-wave solutions to (8.3), as well as the
critical value of c in (8.4) for several values of a and b.
The results of this study are shown in Table III. In all
cases, these are consistent with our hypothesis: the
selected solution is that which corresponds to the critical-
ly damped particle trajectory.
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TABLE III. For each of the values of a and b shown, we
determined the propagation speed of the corresponding travel-
ing wave, cppg, by numerically integrating (8.3). We then nu-
merically determined the critical value of ¢ for (8.4), ¢ ;. In
each case, the precision to which the two values agree was ap-
parently only limited by the coarseness of the discretization
used in the numerical calculations.

a b CPDE Corit

4 0.1 3.908 3.908
4 0.3 2.674 2.672
6 0.1 4.648 4.648
6 0.3 2.676 2.672

B. Two-mode systems

1. Linearly decoupled case

For systems with N > 1, as mentioned previously, the
particle trajectory is determined by both the value of ¢
and the particle’s initial direction. We set out to check
our hypothesis that the trajectory (ngy,c,) corresponding
to the selected solution of (6.1) is critically damped. For
simplicity, we chose a PDE whose selected solution is
such that no mode changes sign at any point. In this
case, to confirm our hypothesis, we must only demon-
strate that there exist trajectories (n’,c’) arbitrarily close
to (mg,c¢q) for which all coordinates change sign at least
once. In fact, we obtained results consistent with the ex-
istence of trajectories (mg,c’) arbitrarily close to (ng,c,)
satisfying this condition.

Fixing n=n,, we saught the “critical” values of ¢ for
each g;. c; is a critical value for g; if for any interval Ac
containing values on either side of c;, there exist values
for which g; changes sign at least once and values for
which g; never changes sign. For the example considered
here, we found that for each mode there exists only one
critical value of c¢. Proceeding by first numerically gen-
erating traveling-wave solutions to the PDE in question,
we then used these solutions to supply initial conditions
for the corresponding particles in the classical mechani-
cal analogues. In each case, we selected a point near the
back of the wave front, where each mode is near its equi-
librium value. Then recalling the identifications @; —g¢;
and dg; /dx —p;, we obtained a set of initial conditions
for the particle near q;. [Note that in this case,
q;7(1,1).] With these initial conditions fixed, we then
determined the critical values of ¢ for each mode in-
dependently. Our hypothesis is that all values so deter-
mined should be equal to each other and to the propaga-
tion speed found by solving the PDE.

We investigated the following PDE:

Y %y
B =25 thitstit— 49, s
& _ '

at FY) +¢2+s¢2¢1—%¢%—¢2¢% .

There is perhaps no simpler N > 1 realization of (6.1) for
which traveling-wave solutions exist. Of course, we con-

sidered only values of s large enough that the realizable
solutions consisted of two-mode invasions. The results of
our study are shown in Fig. 1 and Table IV. In all cases,
these results support our hypothesis.

2. Linearly coupled case

Although we have not been able to demonstrate a char-
acterization of the selected solutions of linearly coupled
multiple-mode equations, we believe that such solutions
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FIG. 1. To determine the values of c.; shown in Table IV,
we obtained particle initial conditions (q,9,920,P10,P20) from the
wave fronts generated by numerically integrating (8.5). Then,
fixing the initial values of q,, ¢,, and p, at g9, g1, and p,o, We
determined values of c; corresponding to each mode for initial
conditions of p, on either side of p,,. (a) depicts results for the
case s =3, and (b) those for s =9. The dashed lines correspond
to the speeds found by integrating (8.5). Ap,, is the uncertainty
in determining p,o from the numerically generated wave fronts.
Similar results were obtained by holding the initial value of p,
fixed at p,o and varying the initial value of p,. In each case, the
results are consistent with our hypothesis: for the trajectory
corresponding to the selected solution, each mode is critically
damped.
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TABLE IV. We first numerically integrated (8.5) to large
enough times that traveling-wave solutions were realized. The
propagation speeds so determined are represented here by cppg.
Using these traveling-wave solutions, we obtained initial condi-
tions for the “particles” whose trajectories are described by
ODE’s corresponding to (8.5). From these initial conditions, we
were able to determine independently critical values of ¢ for
each mode. Those found for ¢, and ¢, are designated here by
Cierit and ¢, For each s we found disagreement between all
values monotonically decreasing with increasingly fine discreti-
zations.

S Clcrit Ccrit CPDE
3 2.923 2.923 2.925
4 3.396 3.397 3.394
5 3.943 3.943 3.939
6 4.527 4.528 4.525
7 5.135 5.136 5.132
8 5.757 5.760 5.754
9 6.388 6.395 6.382

too must be structurally stable. We checked this point
numerically for (7.5).

Let us define F, and F, such that (7.5) can be written
as

Y, /3t =2V*, +F (Y1,¢,) ,

(8.6)
3y /3t =V +F, (91, 0,) .

We assume that the perturbation represented by
F,—F, +6F, and F,—F,+08F,, where 8F,= —10¢, if
1; <6 and 0 otherwise, becomes physically small as 6 —0.
Then, if a traveling-wave solution of (8.6) with speed c is
structurally stable, the speed of the selected solution of
the perturbed equation must converge to ¢ as §—0. We
numerically determined propagation speeds for selected
solutions of perturbed versions of (8.6) with several values
of 8. The results of this study, shown in Table V, support
our structural stability hypothesis.

We next studied a physically unrealizable solution of
(8.6). We were able to produce such a solution by choos-
ing two small positive values €, and €,, and forcing the
value of x at which both ¥,=¢, and ¢,=¢€, to move at
speed ¢ =10. Let us call this system “tip driven” and the
system considered above ‘“bulk driven.” We chose

TABLE V. The value of 8 determines the size of the “bump”
at the origin. For all nonzero values of , the speeds listed here
were observed for both the bulk driven and tip driven systems.
The speed for the §=0 case is that observed in the bulk driven
system.

) c
1073 3.68
107¢ 3.73
1077 3.77
1078 3.79
10~° 3.81
10712 3.83

0 3.86
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€,=0.248X 107" and €,=107'!. With these values, the
eigenfunction of the linear equation coresponding to (8.6)
for the traveling-wave solution with ¢ =10 is given by
const X (€;,€,)exp(—kx ), with k=0.323. We then com-
puted the speed of the resulting front by watching the
point at which 3, =0.01. Not surprisingly, this value was
10. However, when we applied perturbations to the tip
driven system identical to those applied to the bulk
driven system, in each case, the propagation speed com-
puted was also identical to that found for the bulk driven
system. The faster front is therefore destroyed by these
perturbations, and we conclude that it is structurally un-
stable.

IX. EQUATIONS WITH MULTIPLE
PHYSICALLY REALIZABLE SOLUTIONS

For each of the PDE’s we have investigated to this
point, there exists a unique structurally stable selected
solution. This implies that the steady state behavior of
the physical system modeled by any one of these PDE’s is
independent of its initial conditions. For the N =2 case
considered above, in addition to the selected two-mode
solution, there are structurally stable single-mode solu-
tions obtainable by setting one mode to zero. These solu-
tions, however, are unstable with respect to small pertur-
bations of the null modes and therefore unrealizable.
There is certainly no reason, however, that such must be
the case for all systems exhibiting front propagation. In
this section, we consider systems for which there exists
no unique selected solution, but for which the steady
state behavior differs for different sets of physically realiz-
able initial conditions [28]. We will begin by studying
three relatively simple equations and then consider a
more complicated, but more directly physically motivat-
ed system. For the latter, we will demonstrate how the
stability of a certain structurally stable solution with
respect to fluctuations changes with temperature and
how, as a result, the number of realizable solutions
changes from one to two.

A. Simple examples

Consider the following system of coupled equations:

Y, Y
E-l-z ale +[¢1—al¢19(|¢21_b)]e(l_—W’l\) ’
, 9.1)
d d
‘(T;I;_z: a;/}; + [ —a 9,0 —b)le—h)) ,

where a,a, >0 and 0<b <1. We should point out that
the nondifferentiability of (9.1) is not crucial. That is, by
slightly modifying this equation, we can produce a
smooth equation exhibiting the same general features.
Here, the initial conditions and the subsequent race to b
determines the asymptotic behavior. That mode which is
favored by the initial conditions and attains the value b
ahead of the other will lead the invasion into the zero
solution. The steady state solutions are the following:



(1+x—c;t)exp[ —(x —c;t)], x—¢;t>0,

1, x—¢t=<0,

;=

with ¢; =2 and
[1+V 1—a;(x —c;t)]exp[ =V 1—a;(x —¢;1)] ,
1, x—¢;t=0,

¥,=

with cj=2\/ 1—aj, for the leading and trailing modes,
respectively.

As a somewhat more interesting example, we consider
the following set of coupled equations:

Yy, Y
=gz Tl — et
y 9.4)
&, _, &
o 2 i’ +— 1l — 13 .

As above, nonanalyticity here is not crucial. Using 7 in-
stead of ¥,|¢,| would simply limit the following discus-
sion to fronts for which i, assumes only positive values.
The coupling terms here serve to introduce a competition
between the two modes. If one mode is somehow able to
establish itself ahead of the other, it tends to suppress the
trailing mode. We thus recognize the mechanism by
which the initial conditions can gain great importance in
determining the asymptotic behavior. However, the
asymmetry among the diffusion terms and the existence
of the dy? term present the possibility that, depending on
the value of d, one or the other mode will have an “un-
fair” advantage, and independently of the initial condi-
tions this mode will lead the selected invasion.

A simple analysis reveals that there exists
d,€(0,1+3/V2) such that for all d <d, the selected
propagating front is one for which ¥, leads. Similarly,
there exists d,€(1+3/V2,v2+3V/3/2) such that for
all d > d,, the selected propagating front is one for which
¥,. (In fact, in this case, ¥,=0.) Numerically, we have
found that d,; =2.8 and d,~3.4. Thus, for 2.8 <d <3.4,
the asymptotic behavior of the system is determined by
the initial conditions. Outside this region, this behavior
is independent of the initial conditions (assuming neither
mode is identically zero). In Fig. 2, the speed of each
mode is plotted as a function of d.

Equations (9.1) and (9.4) are both examples of the type
of equation studied in Sec. VI. Thus in both cases, the
structural stability hypothesis implies that the initial con-
ditions choose among structurally stable and therefore
critically damped solutions. For both equations, the
stable fixed points to which the leading invasions of the
physically realizable solutions converge behind their
fronts are each nonzero for only one mode. The equa-
tions governing these leading modes are all AW-type
PDE’s, for which the validity of the structural stability
hypothesis and the minimum speed characterization are
rigorously established. The physically realizable solu-
tions of (9.1) and (9.4) are therefore indeed the slowest
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9.2)
x—c;t>0,
9.3)
-

members of distinct families of stable solutions (i.e., the
stable solutions of the AW-type equations in question), as
conjectured.

For the two examples thus far considered, competition
between mutually destructive modes leads to a selection
between physically realizable solutions. In this case, the
mutually destructive nature of the modes precludes the
existence of a stable traveling-wave solution representing
the simultaneous invasion of both modes. The initial
conditions therefore select one mode at the expense of the
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FIG. 2. c, represents the propagation speed of ¢, and c, that
of ¢, for (9.4). (a) and (b) depict the cases in which the initial
conditions favor ¥, and ¥,, respectively.
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other. We now consider an equation for which the
asymptotic behavior is not determined by such a mode-
mode competition, but for which nonetheless there exist
multiple physically realizable solutions. In this case, the
initial conditions select among physically realizable solu-
tions displaying varying degrees of cooperative behavior.
The selection is not between competing modes, but
among ways of exploiting the (sometimes) cooperative in-
teraction between modes.
We consider the following:

Y Y
-a*t-l = _6_21 +oF s — i — Uiy,
x 9.5)
9 ??
%:—a—d}%+¢2+¢1¢2+s¢2¢%_%¢'§_¢'2¢? -
X

The second order terms here introduce an interesting
effect. Depending on the signs of the two modes, these
terms can encourage or discourage their growth. In addi-
tion, if at any time a given mode assumes values of strict-
ly one sign, it must remain this way for all later times. It
is thus apparent how the initial conditions can play a cru-
cial role in determining the asymptotic behavior.

For all values of s, there are three distinct physically
realizable traveling-wave solutions to (9.5), one for which
both modes assume only positive values, one for which
one mode assumes only positive values, while the other
assumes only negative values (we do not distinguish be-
tween the two degenerate such solutions), and one for
which both modes assume only negative values. In all
cases, the invasion consists of a single traveling wave
whose front region is composed of nonzero contributions
of each mode. Propagation speeds of these solutions are
plotted in Fig. 3.

Equation (9.5) is again a member of the class of equa-
tions studied in Sec. VI, and thus again, the structural
stability hypothesis implies that all of its physically real-
izable solutions are critically damped. All stable
traveling-wave solutions converging to the (+,+) fixed
point satisfy ¢, =1,. For this reason, each such solution
satisfies the same AW-type equation. For those stable

> w

(oY)

propagation speed

FIG. 3. ¢4, cy,—, and c__ are the speeds of the solutions
to (9.5) for which both modes are positive, one mode is positive
and one negative, and both modes are negative, respectively.

solutions converging to the (—, —) fixed point, the same
statement holds. Thus the physically realizable (+, +)
and (—, —) solutions are also the slowest stable solutions
of their respective families. The stable solutions corre-
sponding to the (+, —) fixed point are such that asymp-
totically their two modes differ by only a constant (nega-
tive) factor. Obviously there exist such solutions which
are faster than the physically realizable one (those which
asymptotically decay to zero sufficiently slowly). Then,
as discussed near the end of Sec. VI, we believe that any
slower propagating front corresponding to the (+,—)
fixed point should be unstable with respect to the bulk in-
vasion which drives all physical (+, —) initial conditions
to the realizable solution. We therefore believe that in
this case too, the physically realizable solution is the
slowest stable propagating front.

The three systems considered above are somewhat
artificial in the sense that they lack physical motivation,
and in each case, the reasons for the critical dependence
on the initial conditions is not at all mysterious. We now
turn our attention to a physically motivated system in
which similar but more interesting behavior is exhibited.

B. Diblock copolymer system

We consider a coupled set of equations describing front
propagation in a 2-space diblock copolymer (DBCP) sys-
tem. For a detailed description of the derivation of these
equations as well as discussion of experimental feasibility,
see [29]. This set of equations describes the motion of
modes of ordered structure as they invade a disordered
region. We consider here the case in which the disor-
dered region is unstable with respect to ordering. In this
case, the most important features of the invasion process
can be understood by studying the following reduced set
of coupled equations:
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Here s represents a reduced temperature. These equa-
tions govern the triplets W,={W,,W ,,W,;} and
W,={Wy,,Wy,,W,3} describing two triangular or-
dered patterns whose orientations differ by 90°.

Note that (9.6) is again an example of the type of equa-
tion studied in Sec. VI, and therefore, by the structural
stability hypothesis, all of its physically realizable solu-
tions correspond to critically damped trajectories. For
each of these solutions, assertions almost identical to
those made about the (+, —) solution of (9.5) again ap-
ply. We therefore conjecture that these solutions
represent the slowest stable members of their families.

Depending on s, the equilibrium of this system is either
a lamellar phase, consisting of only one nonzero mode, or
a triangular phase, consisting of a single nonzero triplet
of modes. Thus, given s and a set of initial conditions,
there is a competition between modes or between triplets,
and eventually only one mode or triplet survives and
evolves toward a steady state traveling-wave solution. In
fact, we have found that there are several distinct re-
gimes, defined by s, in which qualitatively different front
propagation behavior is exhibited. This behavior be-
comes progressively more complicated as s increase from
0. In this paper we will consider only values of s large
enough that the equilibrium phase is the triangular and
that each physically realizable propagating front solution
consists of a traveling-wave invasion of a triplet of modes.

Propagation speeds as a function of s for W,,c;, and
W,,c,, in this regime are shown in Fig. 4. For
s <4.2,c,>c,. Throughout this regime, c, is indepen-
dent of s and determined by only the linear order terms in
(9.6). In particular, ¢, =2 is determined by the linearized
equation describing the evolution of W, for small am-
plitudes, dW, ,/3t=V?W, ,+W,,. Here, ¢, is thus
identical to the speed of small, localized disturbances of
W, 1. Since in this regime ¢, <2, W, is unstable with
respect to such disturbances, and the unique selected
solution therefore consists of an invasion of W,.

Although ¢, is determined by only linear order terms
for s <4.2, the same is not true for c¢,. Near s=2.2, ¢,
begins to acquire an s dependence and is no longer deter-

3.0 T T T T T T

propagation speed

FIG. 4. ¢, and c, represent the propagation speeds of W,
and W,. Near s=4.2, ¢, becomes larger than c¢,. ¢, begins to
acquire an s dependence near s =2.2. ¢, does so near s =4.7.
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mined solely by the linear order terms in (9.6). Due to
this nonlinear effect, near s =4.2, ¢, becomes larger than
2. As aresult, W, is now stable with respect to perturba-
tion by W, ;, and the mechanism responsible for selecting
W, has thus been lost. There is no longer a unique
selected solution. In this regime, to both orientations of
ordered structure, there corresponds a physically observ-
able solution representing the invasion of a triangular
pattern.

Because small fluctuations are no longer effective in
selecting an orientation, the outcome of a given experi-
ment is determined by the initial conditions alone. Clear-
ly, these can be chosen so that the propagating front solu-
tion corresponding to either orientation is realized.

The behavior observed for the DBCP system should be
quite general for systems in which an ordered pattern
with an orientational degree of freedom (i.e., an ordered
pattern in >1 dimensions) propagates into a disordered
region. If the fastest speed present is that corresponding
to small disturbances of a particular mode of ordered
structure, fluctuations in the leading edge of the front will
allow the linear order terms to select their “favorite”
orientation. When the speeds of the fully developed
fronts are larger than that of these small disturbances,
the fluctuations can no longer force such a selection, and
assuming the nonlinear terms favor no orientation, there
will be no unique selected solution.

Although it may be possible to construct a system for
which this plausibility argument does not hold, for those
systems, such as the DBCP, in which couplings between
orientations lead to only stabilizing terms in the equa-
tions of motion, the argument clearly holds. Simply stat-
ed, in such cases, if a perturbation cannot grow in the
leading edge where the front has effectively zero ampli-
tude, it also cannot grow in a region of finite amplitude.
Thus for such systems, if there is a unique selected solu-
tion, it is singled out from the other structurally stable
solutions by a mechanism whose origin lies in the linear
order terms. If the linear terms are able to produce no
such mechanism, there will be no unique selected solu-
tion.

X. SUMMARY AND CONCLUDING REMARKS

The basic idea of this paper is that a good model of
reproducibly observable phenomena must be structurally
stable, i.e., the physical predictions provided by the mod-
el must be stable against small modifications of the mod-
el. This follows naturally from the fact that we cannot
know every detail of a given physical system and there-
fore cannot repeatedly prepare it in an identical way.
There are, of course, numerous unstable systems in na-
ture whose behavior can suffer very large change in
response to very small perturbations. A good model of
such a system must be able to capture this instability, and
thus should be structurally unstable. In this paper, we
have limited our attention to systems exhibiting reprodu-
cibly observable phenomena. The idea of structural sta-
bility was introduced by Andronov and Pontrjagin. Al-
though Andronov and Pontrjagin require structural sta-
bility of all aspects of the model, we require this only of
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the behavior corresponding to reproducibly observable
physical properties. There may be aspects of a given
model which do not correspond to any physically realiz-
able phenomena, or which correspond to unstable phe-
nomena in which we have no interest. Certainly, these
aspects of the model need not be structurally stable.

In this paper we have applied the structural stability
idea outlined above to a special problem, the selection of
front propagation speed in semilinear parabolic PDE’s.
We assume that these PDE’s are reasonable models of
front propagation in physical systems. Then, the repro-
ducibly observable frontal speeds of such systems should
correspond to the structurally stable solutions of these
models. Incidentally, the selection problem of the growth
speed of needle crystals may appear very similar to the
problems we consider here, but there is a crucial distinc-
tion. In the needle crystal case, as must be concluded
when one considers the unstable nature of the well known
Ivanzov solution, the problem is not that of determining
physically meaningful solutions, but of constructing a
physically reasonable model.

The spirit of structural stability is very close to that of
renormalization group (RG) theory, as emphasized in
[30] and [31]. RG can be interpreted as a method to ex-
tract the system behavior insensitive to system details. In
other words, RG is a method of selecting structurally
stable features and/or solutions. In our problem, we may
say each propagating front solution represents a fixed
point of the time evolution of the PDE. This time evolu-
tion may be interpreted as a renormalization group pro-
cedure [32]. We require the p-smallness condition in or-
der to, in the RG jargon, avoid relevant perturbations
which change the nature of the problem as, for example,
a uniaxial anisotropy changes the Heisenberg model.
Some RG ideas have already been applied to calculate the
front speed for certain equations [10].

We have found that for single-mode semilinear para-
bolic PDE’s, the structurally stable propagating front is
the slowest stable one (using the ordinary sense of “‘stabil-
ity”). According to Aronson and Weinberger [12], the
slowest stable front is the observable one for a special
class of semilinear parabolic equations we call the AW
type. Thus our structural stability hypothesis correctly
identifies the observable front in these cases. In other
cases, we do not have rigorous proof, but numerical ex-
amples support our hypothesis.

We have not been able to characterize structurally
stable fronts for all multiple-mode semilinear parabolic
PDE’s, but when these equations exhibit no linear cou-
pling between modes, we have shown that a structurally
stable front corresponds to a critically damped orbit in
the mechanical analogy, exactly as in the single-mode
case. Numerical results supporting this critical damping
characterization were found. These structurally stable
fronts are not necessarily unique, and in some cases, more
than one of them can be realized. In such cases, the ob-
served front is selected from the set of physically realiz-
able solutions by the initial conditions. We believe that
each of these structurally stable solutions represents the
slowest member of a distinct family of solutions. Several
examples supporting this hypothesis have been given.
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For single-mode equations, the reason for the structur-
al stability of the observed front is easily understood
when one considers what we have identified as the funda-
mental feature distinguishing the selected solution from
all other stable solutions. For any given PDE of the form
(2.1) with the AW condition (and very likely, for a much
wider class of PDE’s), there corresponds a “bulk speed.”
If unconstrained by the form of its asymptotic region, a
solution of such a PDE will be given toward a unique
steady state by its bulk. This steady state is the selected
traveling-wave solution. All other stable traveling-wave
solutions are “tip determined.” Only when the form of
the asymptotic region of a solution is able to prevent the
bulk from driving the system can such a steady state be
realized. For these reasons, a small perturbation applied
to F(1) near =0 is able to destroy all but the selected
solution. Since a similar statement holds for multiple-
mode equations, we believe that the selected solutions to
equations of the form (6.1) are set apart from unobserv-
able solutions by the same bulk-tip distinction.

We have studied only time and space independent uni-
form perturbations. Of course, to faithfully model actual
physical systems, we should expect a space-time noise
term to be added as a structural perturbation. The solu-
tion which can survive this perturbation, then, will be ob-
servable. This should be the ultimate version of the
structural stability hypothesis, and indeed such a study
already exists for dynamical systems (see, for example,
the work of Kifer [33], anticipated by Oono and
Takahashi [34] in the case of one-dimensional maps). We
expect, however, that quite often, and particularly for the
equations we have considered, solutions which are
structurally stable against time and space independent
perturbations will also survive this stochastic torture.
Here again, however, as the case of the modification of F
considered in the main body of this paper, we must re-
strict the class of noise. We consider only p-small noise
for which @, is uniformly small in space and time. Con-
sider the fuse analogy. Noise will produce locally p-small
perturbations, so we can imagine a random, continual
sprinkling of water over the fuse. Of course, in this case,
the water must evaporate even far from the front (i.e., at
low temperature) in order to prevent the fuse from
becoming so wet that the perturbation is no longer small.
If the sprinkling of water is sufficiently strong, then it is
intuitively obvious that a solution whose average (in time)
speed is larger than ¢* cannot propagate on this stained
fuse; only the bulk can dry the random wet patches
quickly enough to ensure the propagation of the flame.
In an intuitive sense, there is little difference between this
picture and that considered above in which the film is
covered uniformly with a time-independent film of water.
In the present case, if we coarse-grain in time, the ran-
domly stained fuse appears uniformly damp. We con-
clude that the p-small random perturbation selects what
we have expected from solutions which are produced
from any set of smooth initial conditions.

Although this observation is almost trivial, it has an in-
teresting consequence. We can ask the probability of ob-
serving the time averaged propagation speed {c ) for
the time span [0,7]. We can then ask the probability



49 STRUCTURAL STABILITY AND SELECTION OF . .. 2387

P({c) ;€U of finding this empirical speed in a given set
U of speeds for sufficiently large T. It is very likely that
this satisfies the large deviation principle [35] (with
respect to 7). This implies that there is a variational
principle which selects the most probable propagation
speed. This solution is the structurally stable one accord-
ing to our consideration. Of course we can also consider
the large deviation with respect to noise amplitude. This
should lead to a similar variational principle.

It is an interesting question to ask what happens if we
lift the p-smallness condition from the stochastic pertur-
bation. In the fuse analogy, this corresponds to sprin-
kling water and explosive randomly over the fuse. Even
if water could kill the leading edge, the following ap-
proach of the bulk could set off the explosive burning to
produce a fast leading edge again. Hence, the situation is
likely very complicated.
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APPENDIX

Following Langer and Miiller-Krumbhaar [36], a front
is considered stable, unstable or marginally stable with
respect to a given perturbation if, when viewed from the
frame moving with the front, this perturbation shrinks,
grows, or remains stationary. More precisely, we consid-
er the traveling-wave solution @y(§), where §=x —ct. At
t=0 we apply a perturbation &6¢(&,f) and study
(&, t)=@y & )+8¢(§, t). If on each bounded interval
lim,_, @(&t)=@§), @ol&) is stable with respect to
Spl(&,0). If there exists a finite ¥ such that on each
bounded interval lim,_, ,@(&,t)=@o(£+7), @o(€) is mar-
ginally stable with respect to 8¢(&,1). If no such y exists,
or if this limit does not exist, @y(§) is unstable with

respect to d¢(&,1).
trivial.)

In general, even if the function gy(§) is known, stability
cannot be determined through a linear analysis. We will
now study an example which illustrates this point.

Consider the system

(Generalization to multiple-modes is

a %y
W SH g iRt
(A1)
W13
at 2 d¢2¢1 l/}Z

For all values of s, there is a structurally stable trave]mg-
wave solution to (A1) satisfying 3t,/3r =8, /dx>
+9,— ¥ 1//2_0 We will call this solution ¥,(x,#). For
d <2.1, §,(x,?) is stable with respect to perturbation by
¥, and therefore physically realizable, while for larger
values it is unstable. However, the propagation speed of
¥,(x,?) is 2, while the linear propagation speed to which a
small disturbance of i, will tend at sufficiently large
times [37] is V2, independent of d. Thus although for
d>2.1, ¥,(x,t) is unstable with respect to perturbation
by 1, it is linearly stable for all d. For values of d >2.1,
a small disturbance of ¥, will be initially unable to keep
up with ¥,(x,#), and it will be seen to shrink when ob-
served from the frame moving with speed 2. Viewed
from the lab frame, however, its amplitude will grow in
accordance with the linear equation
3Y,/3t =13%),/3x>+¢,. As this growth continues,
eventually the dy3y? term will become non-negligible,
and the disturbance will begin to gain speed. Eventually
it will reach speeds larger than 2 and will start catching
up to the leading front. For values of d between approxi-
mately 2.1 and 2.3, as the trailing front reaches the lead-
ing front, it will begin to slow down, and the system will
approach a final steady state consisting of a single two-
mode traveling-wave propagating with speed ¢ =2. For
values of d >2.3, the trailing front will not slow to the
original speed of the leading front, but will instead begin
to push the leading front through the dy?y3 term, and
the system will evolve toward a two-mode traveling-wave
propagating at some speed ¢ > 2.
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